Abstract
Rice is an important cereal and drought stress is a critical abiotic stress that negatively influences the performance and productivity of rice crop, particularly under a changing climate scenario. The objectives of this study were to evaluate the impacts of drought stress on grain productivity and water use efficiency of rice cultivars and to assess the genotypic variability among the tested cultivars. Two irrigation treatments including a control and drought stress were applied to the experiments during 2018–2019 and 2019–2020. The statistical evaluation included a comparison of means, genotypic and phenotypic coefficients of variation, path analysis, correlation assessment, hierarchical clustering of tested cultivars and principal component analysis. The results indicated that drought stress negatively affected the grain productivity of the rice cultivars. The grain productivity of the cultivars decreased, ranging between 21–45% and 21–52% in the first and second season, respectively. Similarly, water use efficiency was significantly decreased ranging between 7–53% and 21–55% during the first and the second season, respectively. The broad-sense heritability for grain productivity was differed under control and drought stress treatment, indicating that the chances of the transfer of grain-productivity-related traits could be affected during selection for stress tolerance. The correlation assessment indicated that the intensity of association among the evaluated parameters was higher under the control treatment. A maximum direct effect was observed by water consumption (1.76) under control whereas, by water use efficiency (1.09) under drought stress treatment on grain productivity in path analysis. Considering the water use efficiency as a desired trait for selection in path analysis, a maximum direct effect was observed by grain productivity under the control (0.68) and under drought treatment (0.88). Hom Pathum and Pathum Thani−1 were identified as highly tolerant cultivars in the hierarchical clustering and principal component analysis. It was concluded that the results obtained for the assessment of drought stress on grain productivity, water use efficiency and genotypic variability among these cultivars could be utilized in selection program for stress tolerance and the stress tolerant cultivars could be used for sustaining grain productivity to reduce the impacts of climate change.
Funder
Prince of Songkla University
Subject
Agronomy and Crop Science
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献