Effect of Feeding Stage and Density of Whiteflies on Subsequent Aphid Performance on Tobacco Plants

Author:

Li Yang,Qu Cheng,Yan Xueyan,Sun Xia,Yin Ziyi,Zhao Haipeng

Abstract

Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a cosmopolitan, highly polyphagous agricultural pest, which has the capacity to displace other native insect herbivores. Here, equipped with an integrated approach, the effect of developmental stages and feeding density of whiteflies on Myzus persicae performance in tobacco plants are investigated. Bioassay results showed that B. tabaci nymphs, but not adult, pre-infestation significantly reduced survival and fecundity of M. persicae, and the strongest resistance to M. persicae was detected at the medium density (9–10 nymphs/cm2). Neither low nor high feeding density of B. tabaci nymphs triggered visible resistance to aphids. However, no significant results were detected in salicylate-deficient NahG plants after B. tabaci nymph infestation. In addition to performance distinctions, hormone quantification and qPCR results revealed very different effects for nymph and adult whitefly stages on the defense responses in tobacco. B. tabaci nymph infestation significantly increased SA accumulation and SA-responsive genes (PR-1a, PR-2a) expression but suppressed JA-regulated responses. In contrast, tobacco plants responded to adult infestation by slightly increasing in both SA- and JA-regulated defenses. Furthermore, higher transcription level of Bt56, coding gene of a secretory salivary effector, was recorded in nymphs vs. adults, while silencing of Bt56 by virus-induced gene silencing (VIGS) partly impaired the aphid resistance induced by B. tabaci nymphs. These results proved that the induction of tobacco defense responses varied with the feeding stages of whiteflies: nymphs of B. tabaci, but not adults, induced a defense response against aphids, with a density threshold for this induced resistance.

Funder

National Natural Science Foundation of China

Shandong Modern Agricultural Industry Technology System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3