Effects of Microbial Organic Fertilizer (MOF) Application on Desert Soil Enzyme Activity and Jujube Yield and Quality

Author:

Shao Fanfan1ORCID,Tao Wanghai1,Yan Haokui1,Wang Quanjiu1

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

Abstract

Developing effective regulatory strategies to enhance irrigation water and fertilizer efficiency in the southern Xinjiang region of China, while simultaneously combatting desertification, is of paramount significance. This study focuses on Chinese jujube in Xinjiang and presents findings from a two-year field experiment aimed at investigating the optimal application strategy of microbial organic fertilizer (MOF). The research aims to provide a scientific foundation for achieving high-quality jujube production. The experiment involved a control group (utilizing only freshwater, referred to as CK) and various combinations of MOF treatments. In 2021, these treatments included M1 (0.6 t/ha), M2 (1.2 t/ha), M3 (1.8 t/ha), and M4 (2.4 t/ha), while in 2022, they encompassed M1 (0.6 t/ha), M2 (1.2 t/ha), M4 (2.4 t/ha), and M5 (4.8 t/ha). Over the two-year trial period, we assessed various indices, including the soil’s physical properties, hydraulic characteristics, soil enzyme activities, and relative chlorophyll content. Additionally, we evaluated jujube yield, quality, and economic benefits. The results indicate that MOF application led to significant improvements in soil conditions. Specifically, the average moisture content and profile water storage of the 0–50 cm soil layer increased by 10.98% to 36.42% and 1.8% to 26.8%, respectively. Moreover, in both the 2021 and 2022 experiments, soil saturated water content (SSWC) and water-holding capacity (WHC) increased by 6.25% to 15.98%, while soil hydraulic conductivity (Ks) and bulk density (BD) decreased by 2.91% to 9.88% and 0.63% to 8.08%, respectively. In 2021, MOF application resulted in significant enhancements in soil enzyme activities, with urease activity increasing by approximately 22.5% to 100.5%, peroxidase activity rising by around 24.2% to 148.5%, and invertase activity augmenting by about 5.4% to 32.9%. Notably, the M4 treatment in 2021 demonstrated a substantial jujube yield increase of approximately 19.22%, elevating from 7.65 t/ha to 9.12 t/ha. Based on comprehensive analysis, this study recommends an optimal MOF application rate of approximately 2.4 t/ha. This approach not only provides robust support for the sustainable development of the jujube industry but also serves as a valuable reference for enhancing local soil resilience against desertification.

Funder

Major science and technology projects of the XPCC

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference47 articles.

1. Effects of magnetization on photosynthesis, mineral elements and yield of lettuce vary with water sources;Wang;J. Irrig. Drain.,2021

2. China Economic Net (2021, January 11). Chinese Exchange Launches Jujube Futures. Available online: http://en.ce.cn/Business/topnews/201905/05/t20190505_31996915.shtml.

3. Simulating on the effects of irrigation on jujube tree growth, evapotranspiration and water use based on crop growth model;Bai;Agric. Water Manag.,2021

4. Analysis on planting patterns and industry status of Chinese jujube in Xinjiang;Zhang;Acta Hortic. Sin.,2014

5. Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing;Yu;Comput. Electron. Agric.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3