Effects of Typical Cropping Patterns of Paddy-Upland Multiple Cropping Rotation on Rice Yield and Greenhouse Gas Emissions

Author:

Tang Haiying12,Huang Yao2,Yuan Jiaxin2,Hassan Muhammad Umair2,Liu Ning2,Yang Binjuan2

Affiliation:

1. School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China

2. Research Center on Ecological Science, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China

Abstract

In response to the limitations of traditional double rice cropping models, this study constructed five typical rice planting models in the middle reaches of the Yangtze River, namely “Chinese milk vetch-early rice-late rice (CK/CRR), Chinese milk vetch—early rice—sweet potato || late soybean (CRI), rapeseed—early rice—late rice (RRR), rapeseed—early rice—sweet potato || late soybean (RRI) and potato—early rice—late rice (PRR)” to study the annual emission characteristics of greenhouse gases under different planting models. The results showed the following: (1) From the perspective of total yield in two years, the CRI treatment reached its maximum, which was significantly higher than that of other treatments by 9.30~20.29% in 2019 (p < 0.05); in 2020, except for the treatment of RRI, it was significantly higher than other treatments by 20.46~30.23% (p < 0.05). (2) The cumulative emission of CH4 in the double rice treatment is generally higher than that in paddy-upland rotation treatment, while the cumulative emission of N2O in the paddy-upland rotation treatment is higher than that in the double rice treatment, but the total amount is much lower than the cumulative emission of CH4. Therefore, CH4 emissions from rice fields still occupy most of the GHGs. (3) The global warming potential (GWP) and greenhouse gas emission intensity (GHGI) of different planting patterns in rice fields in 2020 were higher than those in 2019, and the GWP and GHGI of double rice cropping treatment is higher than that of paddy-upland rotation treatments. During the two years, the GWP of CRR treatment reached its maximum and was significantly higher than that of other treatments by 48.28~448.90% and 34.43~278.33% (p < 0.05). The GHGI of CRR was significantly higher than that of CRI and RRI by 3.57~5.4 and 1.4~3.5 times (p < 0.05). Based on the comprehensive performance of greenhouse gas emissions over the two experimental years, RRI and CRI have shown good emission reduction effects, which can significantly reduce greenhouse gas emissions from paddy fields, are conducive to reducing global warming potential and greenhouse gas emission intensity and conform to the development trend of “carbon neutrality”. Therefore, considering high-yield, low-temperature chamber gas emissions, the Chinese milk vetch—early rice—sweet potato || late soybean model performs well and has the best comprehensive benefits. It is of great significance for optimizing the rice field planting mode in the middle reaches of the Yangtze River.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Natural Science Foundation of Hunan

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference38 articles.

1. High temporal frequency measurements of greenhouse gas emissions from soils;Savage;Bio-Geosci.,2014

2. Greenhouse gas mitigation by agricultural intensification;Burney;Proc. Natl. Acad. Sci. USA,2010

3. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture;Smith;Agric. Ecosyst. Environ.,2007

4. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China;Xia;J. Agro-Environ. Sci.,2020

5. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China;Pan;Agric. Ecosyst. Environ.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3