Abstract
Nanoparticles are used in a variety of products, including fertilizer-nutrients and agro-pesticides. However, due to heightened reactivity of nano-scale materials, the effects of nanoparticle nutrients on crops can be more dramatic when compared to non nano-scale nutrients. This study evaluated the effect of nano manganese-(Mn) on wheat yield and nutrient acquisition, relative to bulk and ionic-Mn. Wheat was exposed to the Mn types in soil (6 mg/kg/plant), and nano-Mn was repeated in foliar application. Plant growth, grain yield, nutrient acquisition, and residual soil nutrients were assessed. When compared to the control, all Mn types significantly (p < 0.05) reduced shoot N by 9–18%. However, nano-Mn in soil exhibited other subtle effects on nutrient acquisition that were different from ionic or bulk-Mn, including reductions in shoot Mn (25%), P (33%), and K (7%) contents, and increase (30%) in soil residual nitrate-N. Despite lowering shoot Mn, nano-Mn resulted in a higher grain Mn translocation efficiency (22%), as compared to salt-Mn (20%), bulk-Mn (21%), and control (16%). When compared to soil, foliar exposure to nano-Mn exhibited significant differences: greater shoot (37%) and grain (12%) Mn contents; less (40%) soil nitrate-N; and, more soil (17%) and shoot (43%) P. These findings indicate that exposure to nano-scale Mn in soil could affect plants in subtle ways, differing from bulk or ionic-Mn, suggesting caution in its use in agriculture. Applying nano Mn as a foliar treatment could enable greater control on plant responses.
Funder
U.S. Department of Agriculture
United States Agency for International Development
Subject
Agronomy and Crop Science
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献