Nutrient Loaded Biochar Doubled Biomass Production in Juvenile Maize Plants (Zea mays L.)

Author:

Dietrich Charlotte C.ORCID,Rahaman Md ArifurORCID,Robles-Aguilar Ana A.ORCID,Latif Sajid,Intani KiatkamjonORCID,Müller JoachimORCID,Jablonowski Nicolai D.ORCID

Abstract

Biochars have long been associated with elevating plant productivity. An increasing number of studies, however, report that char application might also impair plant nutrient availability and reduce yields. In particular, char accompanying compounds as well as a hypothesized immobilization of nitrogen have been identified as playing a significant role in possibly diminishing plant productivity following char application. Herein, we tested the fertilizing effects of modified biochars in order to derive knowledge required to develop tailor-made chars, which predictably affect plant nutrition. Slow-pyrolysis maize cob biochar was modified by washing with either ethanol or hydrochloric acid to remove ash and organic compounds or by loading it with nutrient-rich residues in the form of digestate from the bioenergy sector. Maize plants were grown for 35 days on biochar-amended sand. We analyzed both substrate properties (pH, total carbon, and nitrogen, available magnesium and potassium) and plant functional traits (biomass, leaf area, root to shoot ratio, specific leaf area). Our results suggest that total plant biomass production remained unaffected by the application of biochar and its washed forms. Contrastingly, nutrient-loaded biochar induced a significant increase in productivity at similar nutrient levels due to improved plant nutrient uptake. Further research is required to understand the role of biochar modifications that facilitated improvements in plant productivity.

Funder

FP7 Environment

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3