Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River

Author:

Kobierski MirosławORCID,Banach-Szott MagdalenaORCID

Abstract

The research objective of this study was to determine whether and to what extent the form of use of Fluvisols (arable soil and grassland) of a Lower Vistula floodplain valley (Fordonska Valley, Poland) determined their relative organic matter properties, as compared with nearby riverbank sediments. Riverbank sediments were sampled from a depth of 0–20 cm, and soil samples from 0 to30 cm, all in three replicates. Basic physico-chemical soil properties were determined: texture, pH, and the contents of total organic carbon (TOC), total nitrogen (TN), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Humic acids (HAs) were extracted by the Schnitzer method and analysed to assess their spectrometric parameters in the UV–VIS range and hydrophilic and hydrophobic properties. Riverbank sediment samples contained significantly lower TOC and TN contents than Fluvisols, regardless of land-use type. The TOC, TN, DOC and DON contents and properties of humic acids in the Fluvisol surface layer depended on land-use type, because the arable soils had significantly lower TOC, TN, DOC and DON contents than the grasslands, despite having a similar grain size (texture). Based on the A2/4, A2/6, A4/6 ratios, it was found that HA molecules isolated from the humus horizon of arable soils had a higher degree of maturity than HAs isolated from grassland soil samples. The spectrometric properties of humic acids isolated from riverbank sediments showed a higher degree of maturity than those from Fluvisols. This research showed that the properties of humic acids in Fluvisols are determined by the quantity and quality of organic matter transported in suspended matter that accumulates annually in flood valleys during flood events. The current land-use type of Fluvisols significantly influenced the properties of organic matter, and thus of humic acids. Therefore, these properties can be used to evaluate the transformation of organic matter that occurs in Fluvisols depending on the type of use.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3