Forecasting Yield and Lignocellulosic Composition of Energy Cane Using Unmanned Aerial Systems

Author:

Cholula UrielORCID,da Silva Jorge A.,Marconi Thiago,Thomasson J. Alex,Solorzano Jorge,Enciso JuanORCID

Abstract

Crop monitoring and appropriate agricultural management practices of elite germplasm will enhance bioenergy’s efficiency. Unmanned aerial systems (UAS) may be a useful tool for this purpose. The objective of this study was to assess the use of UAS with true color and multispectral imagery to predict the yield and total cellulosic content (TCC) of newly created energy cane germplasm. A trial was established in the growing season of 2016 at the Texas A&M AgriLife Research Center in Weslaco, Texas, where 15 energy cane elite lines and three checks were grown on experimental plots, arranged in a complete block design and replicated four times. Four flights were executed at different growth stages in 2018, at the first ratoon crop, using two multi-rotor UAS: the DJI Phantom 4 Pro equipped with RGB camera and the DJI Matrice 100, equipped with multispectral sensor (SlantRange 3p). Canopy cover, canopy height, NDVI (Normalized Difference Vegetation Index), and ExG (Excess Green Index) were extracted from the images and used to perform a stepwise regression to obtain the yield and TCC models. The results showed a good agreement between the predicted and the measured yields (R2 = 0.88); however, a low coefficient of determination was found between the predicted and the observed TCC (R2 = 0.30). This study demonstrated the potential application of UAS to estimate energy cane yield with high accuracy, enabling plant breeders to phenotype larger populations and make selections with higher confidence.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3