Potential Use of Sweet Potato (Ipomoea batatas (L.) Lam.) to Suppress Three Invasive Plant Species in Agroecosystems (Ageratum conyzoides L., Bidens pilosa L., and Galinsoga parviflora Cav.)

Author:

Shen ShicaiORCID,Xu Gaofeng,Li Diyu,Jin Guimei,Liu Shufang,Clements David RoyORCID,Yang Yanxian,Rao Jia,Chen Aidong,Zhang Fudou,Zhu XiaochengORCID,Weston Leslie A.ORCID

Abstract

Sweet potato (Ipomoea batatas (L.) Lam.) is a logical candidate crop to suppress invasive plants, but additional information is needed to support its potential application as a suppressive ground cover. The current study utilized a de Wit replacement series incorporating five ratios of sweet potato grown in the field in combination with one of three invasive plants (Ageratum conyzoides L., Bidens pilosa L., and Galinsoga parviflora Cav.) in replicated 9 m2 plots. Stem length, total biomass, and leaf area were higher for monoculture-grown sweet potato than these parameters for any of the invasive plants grown in monoculture. In mixed culture, the plant height, branch, leaf, inflorescence, seed, and biomass of all invasive plants were suppressed by sweet potato. The relative yield parameter indicated that intraspecific competition was greater than interspecific competition for sweet potato, while the reverse was true for invasive species. The net photosynthetic rate was higher for sweet potato than for B. pilosa and G. parviflora but not A. conyzoides. Superoxide dismutase and peroxidase activities of each of the three invasive plants were reduced in mixture with sweet potato. Our results demonstrated that these three invasive plants were significantly suppressed by sweet potato competition due to the rapid growth and phenotypic plasticity of sweet potato.

Funder

Applied Basic Research Key Project of Yunnan

Yunnan Provincial Science and Technology Department

Natural Science Foundation of Yunnan Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3