Energy Sorghum Removal of Soil Cadmium in Chinese Subtropical Farmland: Effects of Variety and Cropping System

Author:

Wang Shuai12,Li Bo1,Zhu Hanhua1,Liao Wenjuan2,Wu Cong2,Zhang Quan1,Tang Kaizhao2,Cui Haojie2

Affiliation:

1. Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

2. College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China

Abstract

Planting energy sorghum to remove soil cadmium (Cd) has been selected as an effective phytoremediation method in subtropical farmland in China in recent years. Nevertheless, the effects of energy sorghum species and cropping systems on Cd removal by energy sorghum are still not fully understood. In the present work, biomass sorghum (BS) and sweet sorghum (SS) were planted for screening varieties and comparing the applicability of cropping systems to remove Cd from contaminated soils through batch field experiments. The results indicated that BS had a higher plant height (4.70–75.63%), lower water content in the shoot (4.78–13.49%), greater dry biomass yield (13.21–125.16%), and stronger Cd removal (average 45.71%) compared with SS. Significant differences (p < 0.05) were observed in the agronomic traits and Cd accumulation of energy sorghums with genetic regulation of varieties. Pearson correlation coefficients analysis and the structural equation model (SEM) showed that plant height was the crucial agronomic parameter affecting the dry biomass yield, and Cd concentration in the stem was the key factor for evaluating the Cd extraction ability of energy sorghums, which indirectly determined the removal of Cd by energy sorghum together. Furthermore, the regeneration cropping system was the most suitable because of the adaptation to climatic conditions of energy sorghums in subtropical regions of China, and its Cd removal efficiency increased by more than 49% compared with double cropping and single cropping systems, respectively. Our study provides valuable information for the phytoremediation of Cd-contaminated soil in Chinese subtropical farmland.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3