Abstract
Optimizing row spacing can potentially improve yields when resources such as light and water are limited. Sugarcane in Louisiana is principally grown on rows spaced 1.8 m apart, but interest in planting on 2.4 m rows is increasing. In this study, we hypothesized that wider row spacing would have greater water availability. Soil moisture sensors were placed at 15, 30, and 45 cm depths in treatments: 1.8 and 2.4 m row spacings, two varieties (L 01-299 and HoCP 04-838), and two planting dates. Soil moisture was monitored in 15-min intervals from 2017 to 2020. Mean volumetric water content was slightly greater in 2.4 m than 1.8 m row spacing at 15 and 45 cm, but the biggest difference was observed when soil water content reached its lowest levels where 2.4 m rows had 1.1, 3.1, and 9.8 times more water available at 15, 30, and 45 cm, respectively, compared to 1.8 m row spacing. However, in both row spacings, plant-available water was always present in the top 45 cm, even during periods of low rainfall. Potentially, high water availability provides an opportunity to increase photosynthesis in sugarcane varieties by selecting for greater photosynthetic capacity and CO2 uptake through increasesd stomatal conductance.
Subject
Agronomy and Crop Science
Reference54 articles.
1. Sugarcane Breeding Programs in the USA
2. Productivity of sugarcane on narrow rows, as affected by mechanical harvesting
3. Evaluating the investment, fuel, and labor cost structure of wide-row sugarcane production in Louisiana;Deliberto;J. Am. Soc. Sugar Cane Technol.,2020
4. The effect of row spacing on L 01-299 and HoCP 04-838 sugarcane yields in Louisiana;White;J. Am. Soc. Sugar Cane Technol.,2021
5. Effects of traffic control on the soil physical quality and the cultivation of sugarcane
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献