Monitoring Olive Oil Mill Wastewater Disposal Sites Using Sentinel-2 and PlanetScope Satellite Images: Case Studies in Tunisia and Greece

Author:

Issaoui Wissal,Alexakis Dimitrios D.ORCID,Nasr Imen Hamdi,Argyriou Athanasios V.ORCID,Alevizos Evangelos,Papadopoulos NikosORCID,Inoubli Mohamed Hédi

Abstract

Mediterranean countries are known worldwide for their significant contribution to olive oil production, which generates large amounts of olive mill wastewater (OMW) that degrades land and water environments near the disposal sites. OMW consists of organic substances with high concentrations of phenolic compounds along with inorganic particles. The aim of this study is to assess the effectiveness of satellite image analysis techniques using multispectral satellite data with high (PlanetScope, 3 × 3 m) and medium (Sentinel-2, 10 × 10 m) spatial resolution to detect Olive Mill Wastewater (OMW) disposal sites, both in the SidiBouzid region (Tunisia) and in the broader Rethymno region on the island of Crete, (Greece). Documentation of the sites was carried out by collecting spectral signatures of OMW at temporal periods. The study integrates the application of a variety of spectral vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), in order to evaluate their efficiency in detecting OMW disposal areas. Furthermore, a set of image-processing methods was applied on satellite images to improve the monitoring of OMW ponds including the false-color composites (FCC), the Principal Component Analysis (PCA), and image fusion. Finally, different classification algorithms, such as the ISODATA, the maximum likelihood (ML), and the Support Vector Machine (SVM) were applied to both satellite images in order to assist in the overall approach to effectively detect the sites. The results obtained from different approaches were compared, evaluating the efficiency of Sentinel-2 and PlanetScope images to detect and monitor OMW disposal areas under different morphological environments.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3