Lignite Substrate and EC Modulates Positive Eustress in Cucumber at Hydroponic Cultivation

Author:

Łaźny RadosławORCID,Mirgos Małgorzata,Przybył Jarosław L.ORCID,Niedzińska Monika,Gajc-Wolska JaninaORCID,Kowalczyk WaldemarORCID,Nowak Jacek S.ORCID,Kalisz StanisławORCID,Kowalczyk Katarzyna

Abstract

Hydroponic cultivation using organic, fully biodegradable substrates that provide the right physical properties for plant growth and development is now the future of soilless production. Despite the high productivity and strict control of production conditions in this method, excessive salinity of the substrate often occurs. However, recent research results indicate that salinity at a high enough threshold can improve yield quality, while prolonged exposure to too high EC, or exceeding the safe EC threshold for a given species, leads to reduced quality and reduced or even no yield. The aim of this study was to determine the effect of biodegradable lignite substrate (L) and eustressor in the form of high EC nutrient solution (7.0 dS·m−1) on morphological and physiological parameters, as well as the quality and yield of cucumber (Cucumis sativus L.) in hydroponic cultivation compared to the mineral wool substrate (MW). The MW/high EC combination showed a significant reduction in shoot diameter by nearly 6% compared to the MW/control EC combination. The stomatal conductance (gs) and the transpiration rate (E) were also significantly reduced in this combination. The present study indicates that the effects of eustressor application vary depending on the growing medium used, and more favorable effects in terms of yield quality were obtained using biodegradable lignite substrate. The high EC of nutrient solution combined with lignite substrate (L/high EC) significantly increased in cucumber fruit the content of β-carotene, lutein, chlorophyll a, chlorophyll b and the sum of chlorophyll a + b by 33.3%, 40%, 28.6%, 26.3% and 26.7%, respectively, as compared to MW/high EC combination.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3