Abstract
This work examines in silico the dominant geochemical processes that control inorganic nutrients (Ca, Mg, Na, K) availability in irrigated agricultural soil amended with potassium-enriched biochar (from olive mill wastes) at mass doses of 0.5%, 1%, 2% and 10%. The geochemical modelling step was supported by analytical measurements regarding the physicochemical characteristics of the irrigation water, the agricultural soil and the biochar. Two geochemical approaches, namely equilibrium exchange (E.E.) and kinetic exchange (K.E.) models were applied and compared to assess nutrient release with an emphasis on potassium availability. Equilibrium exchange perspective assumed that nutrient release is controlled by ion-exchange reactions onto the biochar surface, whilst kinetic exchange perspective assumed the contribution of both ion-exchange and dissolution of salts. Results indicated that for the E.E. model, the soluble amount of potassium is readily available for transport within the pores of the porous media, and therefore is leached from the column within only 10 days. For the K.E. model that assumes a kinetically controlled release of potassium due to interactions occurring at the solid-solution interface, the assessed retention times were more realistic and significantly higher (up to 100 days). Concerning the applied doses of biochar, for a 2% biochar fraction mixed with soil, for example, the available K for plants doubled compared with the available K in the soil without biochar. In any case, the use of numerical modeling was proven helpful for a quick assessment of biochar performance in soil, by avoiding time-consuming and laborious experimental set-ups. Validation of the models by experimental data will further establish the proposed mechanisms.
Subject
Agronomy and Crop Science
Reference69 articles.
1. Our Priorities—The Strategic Objectives of FAO,2019
2. “4 per 1000” Initiative Strategic Planhttps://www.4p1000.org/sites/default/files/francais/strategic_plan.pdf
3. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth
4. Organic and Inorganic Fertilizer; Integral Part for Crop Production Review Article;Adnan;EC Agric.,2020
5. Biochar impact on nutrient leaching from a Midwestern agricultural soil
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献