Enhancing Drought Tolerance and Water Productivity of Diverse Maize Hybrids (Zea mays) Using Exogenously Applied Biostimulants under Varying Irrigation Levels

Author:

Mansour Elsayed1ORCID,El-Sobky El-Sayed E. A.1ORCID,Abdul-Hamid Mohamed I. E.1,Abdallah Eman1,Zedan Abdeltawab M. I.2ORCID,Serag Ahmed M.3ORCID,Silvar Cristina4ORCID,El-Hendawy Salah5ORCID,Desoky El-Sayed M.6ORCID

Affiliation:

1. Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt

2. Department of Agricultural Engineering, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt

3. Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha 13518, Egypt

4. Grupo de Investigación en Bioloxía Evolutiva, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, 15071 A Coruña, Spain

5. Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

6. Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt

Abstract

Water deficit is a decisive challenge that tremendously affects maize physiological functions and productivity. Hence, it is crucial to ameliorate its tolerance to drought stress, in particular under abrupt climate change and a growing population. The present study aimed to explore the influence of exogenously sprayed moringa seed extract (Moringa oleifera) and α-tocopherol on physio-biochemical, morphological, and yield attributes of six diverse maize hybrids under three irrigation levels in poor-fertility sandy soil. The applied irrigation regimes were based on estimated crop evapotranspiration (ET) using the FAO Penman–Monteith equation. A split–split plot arrangement with a randomized complete block design and three replicates was applied for different treatments. Irrigation levels (100% ET, 75% ET and 50% ET) were established in the main plots, while foliar applications (moringa extract and α-tocopherol) were located in subplots and the assessed hybrids (SC162, SC166, SC167, SC168, SC176, and SC178) in subsubplots. Mild (75% ET) and severe (50% ET) drought stress gradually reduced the gas exchange, photosynthetic efficiency, water relations, and yield traits compared with well-watered conditions (100% ET). However, foliar application of moringa seed extract or α-tocopherol was effective in reinforcing maize tolerance to drought stress by enhancing the accumulation of osmoprotectants, improving antioxidant enzymes, and decreasing levels of peroxidation of membrane lipids and electrolyte leakage compared to untreated control. These positive impacts were reflected in boosting yield traits and crop water productivity under water deficit conditions. The physiological and agronomic performance of the assessed maize hybrids considerably varied under water deficit conditions. The hybrids SC168, SC176, and SC178 exhibited the best performance under mild and severe drought conditions compared with the other hybrids. Consequently, the integration of exogenously applied moringa seed extract or α-tocopherol with tolerant maize hybrids such as SC168, SC176, and SC178 is an efficient approach to ameliorating drought tolerance under water-scarce conditions in arid environments.

Funder

King Saud University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3