Above- and Below-Ground Interactions and Interspecific Relationships in Wheat/Maize Systems

Author:

Wang Yifan12,Chai Qiang12,Zhao Cai12,Yin Wen12,Hu Falong12,Yu Aizhong12,Fan Zhilong12

Affiliation:

1. Gansu Provincial Key Laboratory of Arid land Crop Science, Lanzhou 730070, China

2. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

Abstract

Above- and below-ground interactions play a crucial role in achieving higher yields in intercropping systems. Nonetheless, it remains unclear how these interactions impact intercropping crop growth and regulate interspecific relationships. This study aimed to quantify the impact of above- and below-ground interactions on crop yield by determining the dynamics of dry matter accumulation, photosynthetically active radiation (PAR) transmittance, and leaf area index (LAI) in intercropped wheat and maize. Three below-ground intensities were set for an intercropping system: no root separation (CI: complete interaction below ground), 48 μm nylon mesh separation (PI: partial interaction below ground), and 0.12 mm plastic sheet separation (NI: no interaction below ground). Two densities were set for maize: low (45,000 plants hm−2) and high (52,500 plants hm−2). At the same time, corresponding monoculture treatments were established. The grain yields in the CI and PI treatments were, on average, 23.7% and 13.7% higher than those in the NI treatment at high and low maize densities, respectively. Additionally, the grain yield for high density was 12.3% higher than that of low density in the CI treatment. The dry matter accumulation of intercropped wheat under the CI and PI treatments was, on average, 9.1%, 14.5%, and 9.0% higher than that in the NI treatment at the flowering, filling, and maturity stages, respectively. The dry matter accumulation of intercropped maize at the blister, milk, and physiological maturity stages increased by 41.4%, 32.1%, and 27.8%, respectively, under the CI treatment compared to the NI treatment. The PAR transmittance and LAI of maize at the V6 stage were significantly increased by increasing the intensity of below-ground interactions. This study showed that complete below-ground interaction contributed to a significant increase in the competitiveness of intercropped wheat with respect to maize (Awm) under the high-density maize treatment, especially at the filling stage of wheat. Moreover, the CI treatment enhanced the recovery effects of maize (Rm) after wheat harvesting. Increasing the intensity of below-ground interactions can significantly enhance the Awm and Rm in intercropping systems, favoring the accumulation of crop dry matter mass and light energy utilization to increase system yields.

Funder

Gansu Youth Science and Technology Fund Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3