Adaptability Mechanisms of Japonica Rice Based on the Comparative Temperature Conditions of Harbin and Qiqihar, Heilongjiang Province of Northeast China

Author:

Shahbaz Farooq Muhammad,Gyilbag AmatusORCID,Virk Ahmad Latif,Xu Yinlong

Abstract

Japonica rice has been considerably impacted from climate change, mainly regarding temperature variations. Adjusting the crop management practices based on the assessment of adaptability mechanisms to take full advantage of climate resources during the growing season is an important technique for japonica rice adaptation to climate changed conditions. Research based on the adaptability mechanisms of japonica rice to temperature and other environmental variables has theoretical and practical significance to constitute a theoretical foundation for sustainable japonica rice production system. A contrived study was arranged with method of replacing time with space having four different japonica cultivars namely Longdao-18, Longdao-21, Longjing-21, and Suijing-18, and carried out in Harbin and Qiqihar during the years 2017–2019 to confer with the adaptability mechanisms in terms of growth, yield and quality. The formation of the grain-filling material for superior and inferior grains was mainly in the middle phase which shared nearly 60% of whole grain-filling process. Maximum yield was noticed in Longdao-18 at Harbin and Qiqihar which was 9500 and 13,250 kg/ha, respectively. The yield contributing components fertile tillers, number of grains per panicle, and 1000-grain weight were higher at Qiqihar; therefore, there was more potential to get higher yield. The data for grain-filling components demonstrated that the filling intensity and duration at Qiqihar was contributive to increase the grain yield, whereas the limiting agents to limit yield at Harbin were the dry weights of inferior grains. The varietal differences in duration and time of day of anthesis were small. Across all cultivars and both study sites, nearly 85% of the variation of the maximum time of anthesis could be justified with mean atmospheric temperature especially mean minimum temperature. Mean onset of anthesis was earliest in Longdao-21 at Harbin, whereas it was latest in Longdao-18 at Qiqihar. The maximum time to end anthesis and the longest duration of anthesis were taken by Longdao-18, i.e., 9.0 hasr and 4.2 h, respectively. Chalkiness and brown rice percentages were elevated at Qiqihar showing Harbin produced good quality rice. This study investigated the adaptability mechanisms of japonica rice under varying temperature conditions to distinguish the stress tolerance features for future sustainability and profitability in NEC. It was concluded that there is an adaptive value for anthesis especially regarding Tmin and, moreover, earlier transplantation may produce tall plants. The results demonstrated that high temperature at the onset of anthesis at the start of the day enhanced the escape from high temperature later during the day. Early transplantation is recommended in NEC because earlier anthesis during humid days rendered for potential escape from high ambient temperature later during that day. Temperature influenced japonica rice significantly and coherently, whereas the influence of growing season precipitation was not significant. Daily mean sunshine influenced the japonica rice significantly, but the impact was less spatially coherent. The results foregrounded the response of the japonica rice to external driving factors focusing climate, but ignored socioeconomic suggesting emphasis on both driving factors to target future research and render important insights into how japonica rice can adapt in mid-high-latitude regions.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3