Abstract
Nitrogen (N) inputs and land-use conversion are management practices that affect soil greenhouse gas (GHG) and nitric oxide (NO) emissions. Here, we measured soil methane (CH4), nitrous oxide (N2O), and NO fluxes from rice fields and a peach orchard that converted from paddies to assess the impacts of nitrogen (N) inputs and land-use conversion on their emissions. Treatments included four paddy field treatments (PN0, PN160, PN220, and PN280) and one peach orchard treatment (ON280) with number indicating the N-input rate of kg N ha−1. The results showed that cumulative emissions of CH4, N2O and NO ranged from 28.6 to 85.3 kg C ha−1, 0.5 to 4.0 kg N ha−1 and 0.2 to 0.3 kg N ha−1 during the rice-growing season, respectively. In terms of greenhouse gas intensity, the PN280 treatment is the recommended N application rate. Land-use conversion significantly reduced the global warming potential from croplands. The conversion shifted soils from an essential source of CH4 to a small net sink. In addition, N2O emissions from the rice–wheat rotation system were 1.8 times higher than from the orchard, mainly due to the difference in the N application rate. In summary, to reduce agriculture-induced GHG emissions, future research needs to focus on the effects of N inputs on rice-upland crop rotation systems.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Startup Foundation for Introducing Talent of Nanjing Agricultural University
Subject
Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献