Rootstock x Environment Interactions on Nitrogen-Use Efficiency in Grafted Tomato Plants at Different Phenological Stages

Author:

Albornoz FranciscoORCID,Nario Adriana,Saavedra Macarena,Videla Ximena

Abstract

The use of grafting techniques for horticultural crops increases plant tolerance to various abiotic and biotic stresses. Tomato production under greenhouse conditions relies on plants grafted onto vigorous rootstocks because they sustain crops for longer periods. Growers under Mediterranean conditions usually grow crops in passive greenhouses during the summer and winter season, to provide fresh products throughout the year. No information is available with regard to the effect of the environment on nitrogen-use efficiency (NUE) in tomato plants grafted onto rootstocks with different vigor. In the present study, NUE, along with its components—uptake (NUpE) and utilization (NUtE) efficiencies—were evaluated in tomato plants grafted onto two interspecific rootstocks, conferring medium (“King Kong”) or high (“Kaiser”) vigor to the plants. The evaluations were carried out during the vegetative and reproductive stage in plants subjected to different environmental conditions resulting in different plant growth rates. The grafting treatments did not affect NUE, NUpE or NUtE in young plants, but at the reproductive stage, differences were found during the summer season (high N demand) where the vigorous rootstock increased NUpE from 55%, in non-grafted plants, to 94%, with the consequent differences in NUE. During the winter crop, no differences in NUE were found between the vigorous rootstock and non-grafted plants, but the less vigorous (cold-tolerant) rootstock enhanced NUpE. Significant positive relationships were found between plant growth rate and both NUE and NUpE, while NUtE decreased with increasing growth rate.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3