Fe(II)-OM Complexes Formed by Straw Returning Combined with Optimized Nitrogen Fertilizer Could Be Beneficial to Nitrogen Storage in Saline-Alkaline Paddy Soils

Author:

Jiang Yinghui,Zhang Shirong,Gao Bing,Wei Ruxue,Ding XiaodongORCID

Abstract

Soil organic carbon (SOC) plays a crucial role in controlling the nitrate-dependent Fe(II) oxidation (NDFO) process, especially for saline-alkaline soils. The effects of straw returning combined with Nitrogen (N) fertilizer application on soil NO3−-N content, Fe(II) form and nirK genes in saline-alkaline soil were studied in a five-year field experiment to explore the regulatory mechanism of SOC on NDFO process. Six treatments were designed with two factors (1) three straw returning rates (C0, C1 and C2, which was 0, 4500 and 9000 kg C ha−1, respectively) and (2) two N fertilization rates (N1 and N2, which was 255 and 400 kg N ha−1, respectively). Under both N levels, compared with C0 and C2 rates, NO3−-N content was increased by 65% and 50% in C1 rate, respectively. NirK genes were decreased with straw returning, in which they were 42.9–58.8% lower in C1 and C2 treatments than that in C0 treatment, respectively. In the N1C1 treatment, the increase of SOC reduced the denitrification by converting aqueous Fe(II) (Fe(II)aq) into Fe(II)-OM complexes and reducing the abundance of nirK genes. Overall, appropriate straw returning (C1) under optimal N fertilization rate (N1) could reduce N loss by decreasing the NDFO process in saline-alkaline paddy soils.

Funder

National Key Research and Development Projects, China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3