Evaluating Chemical Suppression Treatments to Alter the Red: Far-Red Ratio in Perennial Groundcovers for Maize Production

Author:

Bartel Cynthia A.,Moore Kenneth J.ORCID,Fei Shui-zhang,Lenssen Andrew W.ORCID,Hintz Roger L.,Kling Samantha M.

Abstract

Perennial groundcover (PGC) has great potential to deliver ecosystem service benefits and control weeds in annual row crop systems. Inadequately suppressed PGC, however, acts as an early-season weed, causing a shade avoidance response (SAR) in maize (Zea mays L.) before the critical period for weed control (CPWC) even with resource abundance. The SAR results from a low red to far-red light shift, impairing early season plant growth and decreasing yield. A field study was conducted in Ames, IA, USA to assess application timing of groundcover suppression chemicals on maize growth and development. Two suppression chemical treatments (paraquat or paraquat + glufosinate) were each applied to “Midnight” Kentucky bluegrass (Poa pratensis L.) PGC once on the day of maize planting (DOP) or consecutive maize stages from VE to V6 in a randomized complete block design with unsuppressed groundcover control. Response variables included maize plant height, maize phenological development stage, reflected red:far-red (R:FR) ratio above the PGC canopy, early vegetative and final maize plant density, maize yield and components, and weed communities. Suppression increased reflected R:FR ratio from the groundcover immediately after application. Where suppression was applied at later stages, low R:FR ratio during early vegetative growth stages triggered a maize SAR and maize plant etiolation. Final maize plant height and yield were greater in PGC suppressed at earlier maize stages, although no suppression treatment provided adequate suppression duration. Paraquat + glufosinate more effectively suppressed groundcover overall and limited groundcover competition, producing 8% greater maize grain yield than paraquat alone in year 1, and 13% greater stover and 8% greater total aboveground biomass (TAB) in year 2. Weather conditions influenced chemical suppression efficacy in year 2, emphasizing the importance of identifying reliable chemical suppression to support grain yield from the day of maize planting.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3