Affiliation:
1. Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops/College of Agriculture, Shihezi University, Shihezi 832003, China
2. Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences/National Engineering Research Center for Information Technology in Agriculture/National Engineering Laboratory for Agri-Product Quality Traceability/Meteorological Service Center for Urban Agriculture, China Meteorological Administration-Ministry of Agriculture and Rural Affairs, Beijing 100097, China
3. College of Big Data, Yunnan Agricultural University, Kunming 650201, China
Abstract
The climatic parameters within greenhouse facilities, such as temperature, humidity, and light, exert significant influence on the growth and yield of crops, particularly seedlings. Therefore, it is crucial to establish an accurate predictive model to monitor and adjust the greenhouse microclimate for optimizing the greenhouse environment to the fullest extent. To precisely forecast the greenhouse microclimate and assess the suitability of nursery environments, this study focuses on greenhouse environmental factors. This study leveraged open-source APIs to acquire meteorological data, integrated a model based on Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM), and utilized the sparrow search algorithm to optimize model parameters, consequently developing a time series greenhouse microclimate prediction model. Furthermore, Squeeze-and-Excitation (SE) Networks were employed to enhance the model’s attention mechanism, enabling more accurate predictions of environmental factors within the greenhouse. The predictive results indicated that the optimized model achieved high precision in forecasting the greenhouse microclimate, with average errors of 0.540 °C, 0.936%, and 1.586 W/m2 for temperature, humidity, and solar radiation, respectively. The coefficients of determination (R2) reached 0.940, 0.951, and 0.936 for temperature, humidity, and solar radiation, respectively. In comparison to individual CNN or LSTM models, as well as the back-propagation (BP) neural network, the proposed model demonstrates a significant improvement in predictive accuracy. Moreover, this research was applied to the greenhouse nursery environment, demonstrating that the proposed model significantly enhanced the efficiency of greenhouse seedling cultivation and the quality of seedlings. Our study provided an effective approach for optimizing greenhouse environmental control and nursery environment suitability, contributing significantly to achieving sustainable and efficient agricultural production.
Funder
Xinjiang Uygur Autonomous Region Key R&D Project
National Key Technology Research and Development Program of China
EU FP7 Framework Program
Yunnan Province Basic Research Project