Transcriptome Data Analysis Applied to Grapevine Growth Stage Identification

Author:

Altimiras Francisco123ORCID,Pavéz Leonardo2,Pourreza Alireza4ORCID,Yañez Osvaldo2ORCID,González-Rodríguez Lisdelys25ORCID,García José6ORCID,Galaz Claudio7ORCID,Leiva-Araos Andrés8ORCID,Allende-Cid Héctor1910ORCID

Affiliation:

1. School of Informatics Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile

2. Núcleo de Investigación en Data Science (NIDS), Facultad de Ingeniería y Negocios, Universidad de Las Américas, Santiago 7500000, Chile

3. Inria Chile Research Center, Santiago 7550312, Chile

4. Digital Agriculture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA 94143, USA

5. Facultad de Ingeniería y Negocios, Universidad de Las Américas, Sede Concepción, Concepción 4030000, Chile

6. School of Construction and Transportation Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile

7. Department of Computer Science, Universidad Técnica Federico Santa María, Santiago 8940897, Chile

8. Instituto de Data Science, Facultad de Ingeniería, Universidad del Desarrollo, Av. La Plaza 680 Las Condes, Santiago 7610658, Chile

9. Knowledge Discovery, Fraunhofer-Institute of Intelligent Analysis and Information Systems (IAIS), 53757 Sankt Augustin, Germany

10. Lamarr Institute for Machine Learning and Artificial Intelligence, Dortmund 53115, Germany

Abstract

In agricultural production, it is fundamental to characterize the phenological stage of plants to ensure a good evaluation of the development, growth and health of crops. Phenological characterization allows for the early detection of nutritional deficiencies in plants that diminish the growth and productive yield and drastically affect the quality of their fruits. Currently, the phenological estimation of development in grapevine (Vitis vinifera) is carried out using four different schemes: Baillod and Baggiolini, Extended BBCH, Eichhorn and Lorenz, and Modified E-L. Phenological estimation requires the exhaustive evaluation of crops, which makes it intensive in terms of labor, personnel, and the time required for its application. In this work, we propose a new phenological classification based on transcriptional measures of certain genes to accurately estimate the stage of development of grapevine. There are several genomic information databases for Vitis vinifera, and the function of thousands of their genes has been widely characterized. The application of advanced molecular biology, including the massive parallel sequencing of RNA (RNA-seq), and the handling of large volumes of data provide state-of-the-art tools for the determination of phenological stages, on a global scale, of the molecular functions and processes of plants. With this aim, we applied a bioinformatic pipeline for the high-throughput quantification of RNA-seq datasets and further analysis of gene ontology terms. We identified differentially expressed genes in several datasets, and then, we associated them with the corresponding phenological stage of development. Differentially expressed genes were classified using count-based expression analysis and clustering and annotated using gene ontology data. This work contributes to the use of transcriptome data and gene expression analysis for the classification of development in plants, with a wide range of industrial applications in agriculture.

Publisher

MDPI AG

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3