Genetic Resistance of Switchgrass to Rust Evaluated in a Composite Upland × Lowland Population in Lab and Field Settings

Author:

Edmé Serge J.ORCID,Palmer Nathan A.ORCID,Sarath Gautam,Muhle Anthony A.,Mitchell Rob,Yuen Gary

Abstract

Maintaining low levels of rust incidence (caused by Puccinia novopanici) in switchgrass (Panicum virgatum L.) breeding populations is a priority for the USDA-ARS program engaged in improving cultivars for high biomass yield and quality. Essential to this goal is the unbiased and accurate estimation of genetic parameters to predict the merits of parents and progeny. Spores of the fungus were inoculated in greenhouse-grown seedling progeny of 31 half-sib families in generation 2 (Gen 2) of a composite Summer × Kanlow population for evaluation of rust incidence on the leaves with a 0–9 rating scale. Two parents were later chosen to cross and develop a linkage mapping population as Gen 3. The Gen 2, 3, and Kanlow seedlings were transplanted into the field located near Mead, NE, in early June 2020 and laid out as a replicated row–column design with six blocks of single-row plots of five plants each. The field trial was rated in September 2021 and 2022 with a 0–4 scale. Lab and field data were subjected to univariate linear mixed models via the restricted maximum likelihood to extract the variance components needed to predict the breeding values. The additive genetic variation was substantial (p < 0.01), enough to result in high heritability estimates ranging from 0.42 ± 14 to 0.73 ± 0.09 at the individual and family mean levels. This result implies that rust resistance is under strong genetic control to use mass selection for obtaining satisfactory gains. A possible rust incidence x year interaction was detected with a Spearman correlation of breeding values of −0.38, caused by significant rank changes of the Gen 3 genotypes in 2022 (a high heat and drought year). Genetic gains were predicted to reduce rust incidence scores by at least two points on the rating scale when selecting backwards, and by one point when selecting individual candidates as parents of the next generation. Faster gains (31 and 59%) were realized relative to the second generation by respectively selecting the top 10% of the families in Gen 3 or the top 10% of genotypes within this group. Based on these results, strategies for controlling the incidence of rust will be developed to optimize gains in the other traits of economic importance.

Funder

US-Department of Energy

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3