Utilization of Olive Oil Processing Waste Composts in Organic Tomato Seedling Production

Author:

Tüzel Yüksel,Ekinci KamilORCID,Öztekin Gölgen BaharORCID,Erdal İbrahimORCID,Varol NurhanORCID,Merken Özen

Abstract

Olive oil byproducts show differences according to the olive oil extraction systems, which are called olive mill solid wastes, olive oil wastewater and olive oil wastewater sludge. Three different kinds of composts, including two-phase and three-phase olive mill solid wastes, and olive oil wastewater sludge were produced with separated dairy manure, poultry manure, and straw. The composts obtained from two-phase and three-phase olive mill solid wastes and olive oil wastewater sludge were named as two-phase, three-phase, and water sludge composts, respectively. They were separately enriched by rock phosphate and potassium salt. These composts were mixed with peat in a ratio of 0%, 25%, 50%, 75%, and 100% (v/v). Tomato seeds were sown in all mixtures on 3 February 2016. All the seeds were sown into 2 trays and each plug included 2 replicates. The trays were left in a germination room for 3 days, then moved to a heated greenhouse which is specialized for growing seedlings, and the seedlings were grown there for 3 weeks. The results showed that increasing compost ratios in the growing medium and also the enrichment of the growing medium increased organic matter content, electrical conductivity, and macro and micro nutrient concentrations. The germination period lasted longer with increasing compost ratios. The shoot length was lower at a compost ratio of over 50% excluding water sludge compost, which reacted to over 75%. The highest plant dry weights were obtained in the plants grown on the media with compost ratios of 50%, 25%, and 25% for water sludge compost, enriched two-phase compost, and enriched three-phase compost, respectively. We concluded that the composts obtained from two-phase and three-phase olive mill solid wastes and olive oil waste water sludge can be used without any need of enrichment and a ratio of 25% was found appropriate in most of the measured properties.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3