A Lightweight Method for Ripeness Detection and Counting of Chinese Flowering Cabbage in the Natural Environment

Author:

Wu Mengcheng1ORCID,Yuan Kai1,Shui Yuanqing1,Wang Qian1,Zhao Zuoxi12ORCID

Affiliation:

1. College of Engineering, South China Agricultural University, Guangzhou 510642, China

2. Key Laboratory of Key Technology on Agricultural Machine and Equipment, South China Agricultural University, Ministry of Education, Guangzhou 510642, China

Abstract

The rapid and accurate detection of Chinese flowering cabbage ripeness and the counting of Chinese flowering cabbage are fundamental for timely harvesting, yield prediction, and field management. The complexity of the existing model structures somewhat hinders the application of recognition models in harvesting machines. Therefore, this paper proposes the lightweight Cabbage-YOLO model. First, the YOLOv8-n feature pyramid structure is adjusted to effectively utilize the target’s spatial structure information as well as compress the model in size. Second, the RVB-EMA module is introduced as a necking optimization mechanism to mitigate the interference of shallow noise in the high-resolution sounding layer and at the same time to reduce the number of parameters in this model. In addition, the head uses an independently designed lightweight PCDetect detection head, which enhances the computational efficiency of the model. Subsequently, the neck utilizes a lightweight DySample upsampling operator to capture and preserve underlying semantic information. Finally, the attention mechanism SimAm is inserted before SPPF for an enhanced ability to capture foreground features. The improved Cabbage-YOLO is integrated with the Byte Tracker to track and count Chinese flowering cabbage in video sequences. The average detection accuracy of Cabbage-YOLO can reach 86.4%. Compared with the original model YOLOv8-n, its FLOPs, the its number of parameters, and the size of its weights are decreased by about 35.9%, 47.2%, and 45.2%, respectively, and its average detection precision is improved by 1.9% with an FPS of 107.8. In addition, the integrated Cabbage-YOLO with the Byte Tracker can also effectively track and count the detected objects. The Cabbage-YOLO model boasts higher accuracy, smaller size, and a clear advantage in lightweight deployment. Overall, the improved lightweight model can provide effective technical support for promoting intelligent management and harvesting decisions of Chinese flowering cabbage.

Funder

State Key Research Program of China

Guangdong Provincial Department of Agriculture’s Modern Agricultural Innovation Team Program for Animal Husbandry Robotics

Special Project of Guangdong Provincial Rural Revitalization Strategy in 2020 (YCN

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3