An Optimized Nitrogen Application Rate and Basal Topdressing Ratio Improves Yield, Quality, and Water- and N-use Efficiencies for Forage Maize (Zea mays L.)

Author:

Ma Renshi,Jiang Congze,Shou Na,Gao Wei,Yang Xianlong

Abstract

Applying nitrogen (N) fertilizer at irrational rates and basal topdressing ratios typically leads to high resource wastage and serious environmental pollution and is a global problem. A pot experiment was conducted between 2020 and 2021 to investigate the effects of different N application rates and basal topdressing ratios on the growth, yield, quality, and water- and N- use efficiencies of forage maize. Four N treatments were used, with the following levels: 0 kg/ha (N0), 70 kg/ha (N70), 140 kg/ha (N140), and 210 kg/ha (N210); and two basal topdressing ratios of N fertilizer were tested, namely: 2:8 and 4:6. An increased N application rate, from 0 to 200 kg/ha, increased whole fresh and dry yields. N fertilization increased the crude protein (CP) content of different plant parts (stems, leaves, and ears), as well as at the whole plant level, but decreased neutral and acid detergent fiber content. The dry matter water use efficiency (WUEDM) increased, while the partial-factor productivity of applied N decreased with an increasing N application rate. Compared with N0, the 2-year average dry matter yield under N70, N140, and N210 increased by 21.8%, 27.6%, and 38.2%, respectively, while WUEDM increased by 19.1%, 28.7%, and 45.0%, respectively. At the 2:8 basal topdressing ratio, the dry matter yield, CP content, and N recovery efficiency under all N application rates were higher at harvest compared to the 4:6 ratio during normal rainfall years, while dry matter yield and WUEDM were both lower compared to the 4:6 ratio during dry years. In conclusion, during a normal rainfall year, a N application rate of 210 kg/ha, with a basal topdressing ratio of 2:8 between the sowing and jointing stages, is considered the optimal N fertilizer application strategy to improve forage maize production in the semi-arid areas of the Chinese Loess Plateau.

Funder

National Key Research and Development Plan

Natural Science Foundation of Gansu Province

National Forage Industry Technology System

Fundamental Research Funds for the Central Universities of Lanzhou University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3