Johnsongrass (Sorghum halepense (L.) Pers.) Interference, Control and Recovery under Different Management Practices and its Effects on the Grain Yield and Quality of Maize Crop

Author:

Karkanis AnestisORCID,Athanasiadou Despoina,Giannoulis Kyriakos,Karanasou Konstantina,Zografos Spyridon,Souipas Spyridon,Bartzialis Dimitrios,Danalatos Nicholaos

Abstract

Maize is an important crop grown on significant acreage around the world, and a major constraint for its growth is weed interference. Thus, field studies were conducted to examine johnsongrass interference, control, and recovery under different management practices and its effects on maize. Our results indicated that the most johnsongrass aboveground biomass was recorded in the nontreated and weed-infested for 55 days after sowing (DAS) treatments, while the lowest values were in nicosulfuron treatments (48 and 60 g a.i./ha). Among the various herbicide treatments, the greatest johnsongrass aboveground biomass was recorded in the isoxaflutole (applied pre-emergence at 99 g a.i./ha) + 1 hoeing treatment. Johnsongrass aboveground biomass at 78–85 DAS was 1.4- to 6.0-fold greater than that at 55 DAS, revealing johnsongrass recovery after nicosulfuron treatments. Johnsongrass competition had a significant impact on maize growth and grain yield. The main crop parameters, such as aboveground biomass, grain yield, and protein content, were lowest in the nontreated and weed-infested for 55 DAS treatments, while the greatest values of these parameters were recorded in the weed-free and nicosulfuron treatments. In conclusion, our results indicated that timely and effective chemical control of johnsongrass is essential for improving grain yield and quality of maize.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3