Response of Bread Wheat Genotypes for Drought and Low Nitrogen Stress Tolerance

Author:

Duma SbongeleniORCID,Shimelis HusseinORCID,Tsilo Toi JohnORCID

Abstract

Drought stress and nitrogen (N) deficiency are the major causes of yield losses in bread wheat (Triticum aestivum) production. Breeding wheat cultivars with combined drought and low N stress tolerance is an economical approach for yield gains. The objective of this study was to evaluate the response of diverse bread wheat genotypes under drought and low N stress conditions to select high-performing genotypes for developing breeding populations and production to mitigate against drought and low N stress. Fifty bread wheat genotypes were evaluated under drought-stressed (DS) and non-stressed (NS) conditions and N application rates of 50, 100 and 200 kg N ha−1. The experiments were conducted in a controlled environment and field conditions during the 2019/20 cropping season. Data on grain yield and yield components were collected and subjected to statistical analysis. The four-way interaction involving genotype, water regime, N treatments and testing environment had a significant (p < 0.05) effect on all assessed agronomic traits, suggesting that genotype response depended on the treatment combinations. Drought stress and 50 kg N ha−1 reduced grain yield by 20% compared to NS and 50 kg N ha−1. The grain yield ranged from 120 to 337 g/m2, with a mean of 228 g/m2 under DS. Under DS and 200 kg N ha−1, the genotype designated as SBO 19 had a higher grain yield of 337 g/m2, followed by SBO 22 (335 g/m2), SBO 16 (335 g/m2), SBO 04 (335 g/m2) and SBO 33 (335 g/m2). Grain yields under DS and 50 kg N ha−1, and NS and 50 kg N ha−1 had a positive and significant correlation (r > 0.5; p < 0.01) with most of the evaluated traits. Highly correlated traits directly contribute to total yield gain and should be incorporated during the selection of high-yielding genotypes. The study identified the 10 best lines that are high-yielding with early flowering and maturity under DS or NS conditions and the three N treatments. The selected lines are recommended as breeding parents to develop drought-adapted and N-use efficient genetic resources. The identified genotypes are important for sustainable wheat production and effective breeding of improved cultivars to mitigate drought stress and soil nutrient deficiencies, to ensure food security in Sub-Saharan Africa.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3