Optimizing Nitrogen Fertilization and Variety for Millet Grain Yield and Biomass Accumulation in Dry Regions

Author:

Yang Shuang,Wang Leishan,Akhtar KashifORCID,Ahmad Ijaz,Khan AzizORCID

Abstract

Meeting foxtail millet (Setaria italica L.) (FM) production targets of high grain yield requires appropriate genotype selection and nitrogen (N) fertilization. However, high input costs and low crop yields are the major concerns for FM production systems, particularly in dry regions. To reduce the production costs without sacrificing yield, we assumed that N fertilization would increase the grain yield of FM varieties by improving reproductive organ biomass accumulation. To test this hypothesis, a two-year (2017 and 2018) field investigation in a randomized complete block design with split plot arrangement and three replicates was carried out on FM varieties, namely, V1 (Zhangzagu 8; hybrid) and V2 (Bagu 214; common) to ascertain the effects of five N levels (N1—15; N2—61; N3—108; N4—155; N5—201 kg N ha−1) on biomass accumulation and grain yield at different growth stages. Results showed that the V1 variety had a 34.8% and 28.5% higher grain yield compared to V2 treatment in both years, respectively. The interaction between variety and nitrogen was also significant. The combination of V1 and N4 produced a higher grain yield in both years. This increase in V1 grain yield was supported by the evidence of greater reproductive organ biomass formation, with a 113 and 120 kg ha−1 higher-than-average rate of biomass accumulation in both years, respectively. Among N rates, the N4 level resulted in a higher grain yield (3226 kg ha−1) and (3437 kg ha−1) compared with other N rates in the 2017 and 2018 growing seasons. This higher yield under N4 treatment was confirmed by a higher reproductive organ biomass accumulation at various growth phases, with 138 kg ha−1 and 124 kg ha−1 in 2017 and 2018, respectively. We also noticed that further increases in nitrogen levels did not increase FM grain yield. Conclusively, these data display the significance of proper FM production management techniques. Growing the varieties Zhangzagu 8 at 155 kg N ha-1 fertilization and Bagu 214 at 108 kg N ha−1 fertilization could be promising options to achieve higher grain yield.

Funder

Shenzhen Peacock Program of Shenzhen

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3