Abstract
Each year, 20%–40% of crops are lost due to plant pests and pathogens. Existing plant disease management relies predominantly on toxic pesticides that are potentially harmful to humans and the environment. Nanotechnology can offer advantages to pesticides, like reducing toxicity, improving the shelf-life, and increasing the solubility of poorly water-soluble pesticides, all of which could have positive environmental impacts. This review explores the two directions in which nanoparticles can be utilized for plant disease management: either as nanoparticles alone, acting as protectants; or as nanocarriers for insecticides, fungicides, herbicides, and RNA-interference molecules. Despite the several potential advantages associated with the use of nanoparticles, not many nanoparticle-based products have been commercialized for agricultural application. The scarcity of commercial applications could be explained by several factors, such as an insufficient number of field trials and underutilization of pest–crop host systems. In other industries, nanotechnology has progressed rapidly, and the only way to keep up with this advancement for agricultural applications is by understanding the fundamental questions of the research and addressing the scientific gaps to provide a rational and facilitate the development of commercial nanoproducts.
Subject
Agronomy and Crop Science
Reference133 articles.
1. The importance of plant health to food security
2. Pesticide Use and World Food Production: Risks and Benefits;Stephenson,2003
3. Perspectives for nano-biotechnology enabled protection and nutrition of plants
4. 2—New pesticides: A cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control A2—Grumezescu, Alexandru Mihai;Sinha,2017
5. Nanopesticides: a new paradigm in crop protection
Cited by
306 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献