Genome-Wide Identification and Expression Analysis of Heat Shock Protein 20 (HSP20) Gene Family in Response to High-Temperature Stress in Chickpeas (Cicer arietinum L.)

Author:

Liu Sushuang1,Wu Yizhou1,Li Yang2,Zhang Zaibao1,He Dandan1,Yan Jianguo3,Zou Huasong1,Liu Yanmin1

Affiliation:

1. Department of Life Sciences and Health, Huzhou College, Huzhou 313000, China

2. College of Life Science, Huzhou University, Huzhou 313000, China

3. Huzhou Lvteng Ecological Agriculture Co., Ltd., Huzhou 313000, China

Abstract

Chickpeas (Cicer arietinum L.) are an important legume crop known for their rich nutrient content, including proteins, carbohydrates, and minerals. Thus, they are enjoyed by people worldwide. In recent years, the production scale of chickpeas has been growing gradually. The planting area of chickpeas represents roughly 35–36% of the total planting area, and the output of the beans is roughly 47–48%. However, the growth and development process of chickpeas is limited by a number of factors, including high temperature, drought, salt stress, and so forth. In particular, high temperatures can reduce the germination rate, photosynthesis, seed setting rate, and filling rate of chickpeas, restricting seed germination, plant growth, and reproductive growth. These changes lead to a decrease in the yield and quality of the crop. Heat shock proteins (HSPs) are small proteins that play an important role in plant defense against abiotic stress. Therefore, in the present study, HSP20 gene family members were identified based on the whole-genome data of chickpeas, and their chromosomal positions, evolutionary relationships, promoter cis-acting elements, and tissue-specific expression patterns were predicted. Subsequently, qRT-PCR was used to detect and analyze the expression characteristics of HSP20 genes under different temperature stress conditions. Ultimately, we identified twenty-one HSP20 genes distributed on seven chromosomes, and their gene family members were found to be relatively conserved, belonging to ten subfamilies. We also found that CaHSP20 promoter regions have many cis-acting elements related to growth and development, hormones, and stress responses. In addition, under high-temperature stress, the relative expression of CaHSP20-17, CaHSP20-20, CaHSP20-7, CaHSP20-3, and CaHSP20-12 increased hundreds or even thousands of times as the temperature increased from 25 °C to 42 °C. Among them, excluding CaHSP20-5, the other five genes all contain 1-2 ABA cis-regulatory elements. This finding indicates that CaHSP20s are involved in the growth and development of chickpeas under heat stress, and the mechanisms of their responses to high-temperature stress may be related to hormone regulation. The results of the present study lay the foundation for exploring HSP20 gene family resources and the molecular mechanisms of heat resistance in chickpeas. Our results can also provide a theoretical basis for breeding high-temperature-resistant chickpea varieties and provide valuable information for the sustainable development of the global chickpea industry.

Funder

Huzhou public welfare application research project

2024 Higher Education Research Program by the Zhejiang Province Association of Higher Education

Scientific Research Fund of the Zhejiang Provincial Education Department

National Training Programs of Innovation and Entrepreneurship for Undergraduates

Zhejiang students’ technology and innovation program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3