Phosphorus Release Dynamics from Ashes during a Soil Incubation Study: Effect of Feedstock Characteristics and Combustion Conditions

Author:

Singla Just Berta1,Binder Pablo Martín1ORCID,Guerra-Gorostegi Nagore1,Díaz-Guerra Laura1ORCID,Vilaplana Rosa1ORCID,Frison Nicola2,Meers Erik3ORCID,Llenas Laia1,Robles Aguilar Ana1

Affiliation:

1. BETA Technological Centre (TECNIO Network), University of Vic—Central University of Catalonia (UVic-UCC), Carretera de Roda 70, 08500 Vic, Spain

2. Department of Biotechnology, University of Verona, 37134 Verona, Italy

3. Department of Green Chemistry and Technology, Ghent University, 9000 Ghent, Belgium

Abstract

Recovering phosphorus (P) through combustion from waste streams, like wastewater sludge and animal manure, offers a promising solution. This research explores the P release patterns in different ashes derived from secondary raw materials, using a long-term soil incubation lasting 160 days. The study evaluated the P release dynamics in five types of ashes from enhanced biological phosphorus removal (EBPR) systems and pig slurry burned at different temperatures. According to the results, a primary effect was observed on P bioavailability during the initial incubation period. All tested ashes release more than 50% of the total P applied between days 5 and 10. Ashes from EBPR exhibited higher P release than those from pig manure, indicating ash origin as a key factor in P release. Additionally, combustion temperature was crucial, with higher temperatures resulting in increased P release rates. Furthermore, the Pearson correlation revealed a strong relationship between the characteristics of the ashes and the amount of P release. Overall, these findings suggest that ashes could be a valuable P-source for agriculture avoiding the process of wet chemical P extraction, thus reducing both economic and environmental costs.

Funder

European Union

Marie Skłodowska-Curie grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3