Influence of Magnesium Oxide (MgO) Nanoparticles on Maize (Zea mays L.)

Author:

Abbas Zain1,Hassan Muhammad Ahmad2,Huang Weidong1,Yu Haibing1,Xu Mengqin1,Chang Xiaoyu1,Fang Xisheng1,Liu Liqin1

Affiliation:

1. College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China

2. Anhui Academy of Agricultural Sciences, Hefei 230001, China

Abstract

An approximate revolution synthesis of magnesium oxide (MgO) nanoparticles has been prepared. For plant growth and development, MgO is essential. The effect and efficiency, respectively, in seed germination, seedling growth, and plant growth were also studied. These analyses examined maize with different concentrations and parameters. The concentration of 500 ppm was tested with extreme results in areas such as plant height, protein contents both in-vivo and in-vitro, and MgO effects shown both in shoot (12.83 ± 0.5 cm) and root (5.37 ± 0.5 cm). Maximum confirmations were fixed with the help of MgO NPs characterization through TEM, SEM, FTIR, zeta potential, and X-ray. The effect of MgO NPs showed a significant increase in root and shoot length, and simultaneous in-vivo studies also showed significant results in plant physiological parameters. In effect, the vital performance in germination rate, potential, and index MgO NPs was higher than the control. Moreover, the performance and absorption of MgO NPs was confirmed by physiological characterization with the help of a UV–Vis spectrophotometer applied to the leaves and roots. It was demonstrated that the influence of MgO NPs is positive and potentially can be used for seedling growth and also for plants. It may bolster farming methods, and help maintain high food quality, quantity, and production.

Funder

Anhui Provincial Science Foundation for Young Talents

Talent Projects of Anhui Science and Technology University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3