Evaluation of the Tolerance Ability of Wheat Genotypes to Drought Stress: Dissection through Culm-Reserves Contribution and Grain Filling Physiology

Author:

Islam Md. AmirulORCID,De Rajib Kumar,Hossain Md. AlamgirORCID,Haque Md. Sabibul,Uddin Md. NesarORCID,Fakir Md. Solaiman Ali,Kader Md. AbdulORCID,Dessoky Eldessoky S.ORCID,Attia Attia O.,El-Hallous Ehab I.,Hossain AkbarORCID

Abstract

Drought stress is one of the limiting factors for grain filling and yield in wheat. The grain filling and determinants of individual grain weight depend on current assimilation and extent of remobilization of culm reserves to grains. A pot experiment was conducted with eight wheat cultivars at the Pot House to study the grain filling and the contributions of reserves in culm, including the sheath to grain yield under drought stress. Drought stress was enforced by restricting irrigation during the grain-filling period. The plants (tillers) were harvested at anthesis, milk-ripe, and maturity. The changes in dry weights of leaves, culm with sheath, spikes, and grains; and the contribution of culm reserves to grain yield were determined. Results revealed that drought stress considerably decreased the grain filling duration by 15–24% and grain yield by 11–34%. Further, drought-induced early leaf senescence and reduced total dry matter production indicate the minimum contribution of current assimilation to grain yield. The stress reduced the contribution of culm reserves, the water-soluble carbohydrates (WSCs), to the grains. The accumulation of culm WSCs reached peak at milk ripe stage in control, varied from 28.6 to 84 mg culm−1 and that significantly reduced in the range from 14.9 to 40.6 mg culm−1 in stressed plants. The residual culm WSCs in control and stressed plants varied from 1.23 to 8.12 and 1.00 to 3.40 mg g−1 culm dry mass, respectively. BARI Gom 24 exhibited a higher contribution of culm WSCs to grain yield under drought, while the lowest contribution was found in Kanchan. Considering culm reserves WSCs and their remobilization along with other studied traits, BARI Gom 24 showed greater drought tolerance and revealed potential to grow under water deficit conditions in comparison to other cultivars.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3