Effect of Seed Dressing and Soil Chemical Properties on Communities of Microorganisms Associated with Pre-Emergence Damping-Off of Broad Bean Seedlings

Author:

Gleń-Karolczyk KatarzynaORCID,Boligłowa Elżbieta,Gospodarek JaninaORCID,Antonkiewicz JacekORCID,Luty LidiaORCID

Abstract

Combating soil pathogens that disable plant emergence is among the most difficult challenges of global agriculture. Legumes, preferred in sustainable cultivation systems, are particularly sensitive to pre-emergence damping-off of seedlings. Seed dressing is therefore a very important element in the cultivation technology. The aim of this study was to compare the impact of biological (Pythium oligandrum) and chemical (carboxin + thiuram) seed dressing on the quantitative and qualitative composition of microorganisms participating in the epidemiology of this disease, under specific hydrothermal conditions and chemical properties of the soil (pH, humus, macro-, and micronutrient). Microorganism identification was done using the MALDI-TOF MS (Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) technique. Species were assigned to frequency groups, and populations of pathogens, saprophytes, and antagonists were identified. The biodiversity of these communities was expressed with Simpson’s Reciprocal, Shannon–Wiener, and Evenness (Shannon) indices. In individual variants of seed pre-treatment, the correlations between individual edaphic factors and the suppression of pre-emergence damping-off, the number of isolates obtained from infected seedlings, and the share of individual trophic groups of fungi were assessed. The main causes of pre-emergence damping-off of broad bean seedlings are Ilyonectria destructans, Globisporangium irregulare, Fusarium equiseti, Rhizoctonia solani, and Fusarium solani. Eliminating seed treatment results in a seedling mortality rate of 33.5–42.5%. The effectiveness of the chemical protection product is 44.2% and 25.9%. Carboxin and thiuram reduce the diversity of microorganisms involved in the pathogenesis of pre-emergence damping-off and limit the presence of antagonistic fungi. Under the influence of P. oligandrum, there was a five-fold increase in the population of antagonists. An increase in humus in the soil reduces the percentage of diseased broad bean seedlings.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3