Effects of Broccoli Rotation on Soil Microbial Community Structure and Physicochemical Properties in Continuous Melon Cropping

Author:

Liu Xiaodi1,Ren Xuelian1,Tang Shuangshuang1,Zhang Zhaoran1ORCID,Huang Yufei1,Sun Yanqiu1,Gao Zenggui1,Ma Zhoujie2

Affiliation:

1. College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China

2. Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China

Abstract

The limitations and weaknesses of continuous melon cropping have worsened in recent years. A melon–broccoli rotation can possibly alleviate the problems associated with melon monoculture; however, the underlying mechanisms and their impact on the rhizosphere’s soil microbial community remain unclear. Thus, high-throughput sequencing was used to evaluate the rhizosphere soil’s microbial community’s relative abundance and diversity under melon–broccoli rotation and continuous melon monoculture cropping systems. We found that relative fungal and bacterial diversity and richness increased while fungi relative abundances, such as Fusarium spp. were significantly decreased under broccoli rotation. During continuous cropping, enriched Acidobacteria and Streptomyces spp., Sphingomonas spp., and Pseudomonas spp. were identified, which play important roles in alleviating melon continuous cropping obstacles. The soil under continuous cropping was rendered acidic, underwent secondary salinization, rapidly accumulated soil organic carbon and nitrogen, and lost abundant phosphorus and potassium. In contrast, broccoli rotation partially mitigated these negative physicochemical responses. Redundancy analysis revealed that the soil pH, soil soluble salt content, and soil organic carbon were linked to structures of the soil bacterial and fungal community. Melon–broccoli rotation could effectively equilibrate the soil microenvironment and overcome the challenges and deficiencies associated with continuous melon cropping.

Funder

Independent Innovation Fund for Agricultural Science and Technology of Ningxia Hui Autonomous Region

Special Fund for Agro-scientific Research in the Public Interest

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3