Influence of N, K, and Seaweed Extract Fertilization on Biomass, Photosynthetic Pigments, and Essential Oil of Thymus vulgaris: Optimization Study by Response Surface Methodology

Author:

Muetasam Jafr Shaida,Rahimi Abdol Rahman,Hashemi MasoudORCID,Rokhzadi AsadORCID

Abstract

Nutrient management has a decisive impact on the biomass and essential oil yield of medicinal plants. This study aimed to determine the optimal levels of nitrogen, potassium, and seaweed extract fertilizers to maximize the yield and quality of thyme using the response surface methodology (RSM). The experiment was laid out as a Box-Behnken design with three replications and three experimental factors, including nitrogen (urea) (0, 200, and 400 kg ha−1), and foliar application of potassium (Flourish Sulfopotash) (0, 6, and 12 kg ha−1) and seaweed extract (0, 3, and 6 L ha−1). The generated models were statistically significant for all measured traits except for γ-terpinene and p-cymene. While the influence of N on the amount of photosynthetic pigments followed a quadratic trend, the response of total chlorophyll and carotenoids to increasing potassium was linear. The response of biomass yield to N and seaweed was quadratic and linear, respectively. Potassium application had no significant influence on biomass. Essential oil yield reached its peak value (12 kg ha−1) when N and seaweed were applied at their intermediate levels and with the maximum application rate of potassium. Thymol was identified as the highest essential oil component (46.1%), followed by γ-terpinene (19.2%), p-cymene (14.1%), and carvacrol (5.6%). The optimization results suggested that the application of 162 kg ha−1 urea, 12 kg ha−1 Flourish Sulfopotash, and 4 L ha−1 seaweed extract was sufficient to produce the maximum dry matter (1247 kg ha−1), and more than 11 kg ha−1 of essential oil, with a concentration of 1%. Through optimization, the amounts of thymol and carvacrol were estimated to be as much as 44.2% and 6.2%, respectively. The results of the study suggested that resource optimization through RSM can be used as an efficient method to manage the consumption of fertilizers in thyme production.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3