Development of Transgenic Maize Tolerant to Both Glyphosate and Glufosinate

Author:

Yu XiaoxingORCID,Sun Yongzheng,Lin ChaoyangORCID,Wang Pengfei,Shen Zhicheng,Zhao Yu

Abstract

Genetically modified (GM) crops tolerant to glyphosate have delivered significant economic benefits in farm management. However, the evolution of glyphosate resistance in weeds due to prolonged intensive use of glyphosate poses a serious threat to this weed management system. It is highly desirable in China to deploy dual herbicide-tolerant corn at the very beginning of GM corn release to delay the development of weed resistance to herbicides. Here, we report the creation and characterization of a herbicide-tolerant corn event SCB-29 that expresses both cp4 epsps and bar genes. This transgenic maize is tolerant to glyphosate up to 3600 g a.e. ha−1 and glufosinate up to 3600 g a.i. ha−1, which are quadruple the recommended rates for the two herbicides, respectively. SCB-29 is an event with only a single copy of T-DNA inserted into chromosome 10 of the maize genome. An event-specific PCR detection method was established and three generations of SCB-29 were detected by event-specific PCR suggesting that the transgenes are stably integrated into the maize genome. Analysis of the expression levels of the transgenes among plants of multiple generations by enzyme-linked immunosorbent assays suggested that the expressions are stable over different generations. Moreover, the major agronomic performances of SCB-29 appear to be similar to those of non-transgenic maize, suggesting that SCB-29 is not likely to have yield drag. Therefore, SCB-29 is an excellent herbicide-tolerant candidate to be developed into a commercial herbicide tolerance transgenic event.

Funder

Major project of breeding new genetically modified organisms

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference55 articles.

1. Major cereal grains production and use around the world;Awika;Advances in Cereal Science: Implications to Food Processing and Health Promotion,2011

2. Maize for life;Orhun;Int. J. Food Sci. Nutr.,2013

3. Crop losses to pests;Oerke;J. Agric. Sci.,2006

4. Potential corn yield losses due to weeds in North America;Soltani;Weed Technol.,2016

5. Evaluation of weed control options for herbicide resistant transgenic stacked (TC 1507 X NK603) and conventional maize hybrids for higher productivity;Kannan;Am. J. Plant Sci.,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3