Affiliation:
1. Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, College of Information Engineering, Tarim University, Alar 843300, China
2. Faculty of Horticulture and Forestry, Tarim University, Alar 843300, China
Abstract
Soil moisture content plays a vital role in agricultural production, significantly influencing crop growth, development, and yield. Thoroughly understanding the specific soil moisture content in cotton fields is crucial for enhancing agricultural efficiency and driving sustainable agricultural development. This study utilized the gradient-boosting regression–random forest (GBR-RF) algorithm and the GBR and RF algorithms separately, in conjunction with Sentinel-2 satellite images, to estimate cotton soil moisture content, focusing on the B1–B8 bands and in particular the sensitive B6, B7, and B8 bands. The soil data in the jujube orchard of the study area were collected using soil augers at a depth of 30 cm, with soil data collected from a depth of 20 to 30 cm. The findings revealed that the integrated learning algorithm GBR-RF demonstrated high accuracy, with R2, MAE, and MSE results of 0.8838, 1.0121, and 1.6168, respectively. In comparison, the results using just the GBR algorithm yielded R2, MAE, and MSE values of 0.8158, 1.1327, and 1.9645, respectively, while those obtained from the RF algorithm were 0.8415, 1.0680, and 1.8331, respectively. These results indicate that the algorithms exhibited strong generalization, robustness, and accuracy, with GBR-RF outperforming GBR and RF by 8.34% and 5.03%, respectively, in combination with using the B1–B8 bands for inversion. Furthermore, utilizing the full-band data resulted in R2 values that were up to 24.27% higher than those of the individual bands, affirming the efficacy of band combinations for improved accuracy. This study’s demonstration of the positive impact of integrated learning algorithms on estimating cotton soil moisture content underscores the advantages of multi-band data combinations over single-band data, highlighting their ability to enhance accuracy without significantly impacting errors. Importantly, this study’s findings, while not limited to a single experimental field, have broad applicability in cotton precision agriculture, offering valuable insights for research on yield enhancement and agricultural efficiency.
Funder
Oasis Ecological Agriculture Corps Key Laboratory Open Project
Corps Science and Technology Program
Corps key areas of scientific and technological research program
Tarim University Innovation Team Project
National Natural Science Foundation of China
Reference32 articles.
1. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang cotton-growing area;Bai;Sci. Agric. Sin.,2017
2. Physiology of the cotton plant;Eaton;Annu. Rev. Plant Physiol.,1955
3. Arshad, A., Raza, M.A., Zhang, Y., Zhang, L., Wang, X., Ahmed, M., and Habib-ur-Rehman, M. (2021). Impact of climate warming on cotton growth and yields in China and Pakistan: A regional perspective. Agriculture, 11.
4. Hsieh, Y.-L. (2007). Cotton: Science and Technology, Woodhead Publishing.
5. Investigating soil moisture–climate interactions in a changing climate: A review;Seneviratne;Earth-Sci. Rev.,2010
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献