Combined Use of Novel Endophytic and Rhizobacterial Strains Upregulates Antioxidant Enzyme Systems and Mineral Accumulation in Wheat

Author:

Iqbal Zafar,Bushra ,Hussain Azhar,Dar Abubakar,Ahmad MaqshoofORCID,Wang Xiukang,Brtnicky MartinORCID,Mustafa AdnanORCID

Abstract

Wheat is the third largest grown crop after maize and rice worldwide. Integrated use of chemical and biofertilizers have the potential to improve crop yield and quality due to their growth-promoting attributes. Therefore, the present study planned to evaluate the effectiveness of endophytic (Paenibacillus sp. strain (ZE11), Bacillus subtilis (ZE15) and Bacillus megaterium (ZE32)) and rhizobacterial strains (Bacillus subtilis (ZR2) Bacillus subtilis (ZR3) and Bacillus megaterium strain (ZR19)), solely and in combination, to increase the productivity of wheat and microbial activity in the rhizosphere. The maximum increase in microbial biomass carbon (44%), available phosphorous (30%), ammonium–nitrogen (24%), nitrate–nitrogen (37%), iron (10%), zinc (11%) and bacterial population (31%) was recorded by co-inoculation of ZE11 + ZR3. Subsequently, co-inoculation of ZE11+ZR3 showed a maximum increase of 31%, 29%, 30%, 27%, 33%, 30%, 25%, 9%, 15%, 9%, 18% and 26% in superoxidase dismutase (SOD), peroxidase dismutase (POD), catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and peroxidase (POX), grain yield, nitrogen, phosphorous, potassium, iron and zinc in grains, respectively, as compared to uninoculated control. The sole inoculation of ZR19 showed maximum harvest index (45.5%). The sole inoculation of endophytes and rhizobacteria has a significant effect on growth, physiology, and wheat crop yield. However, co-inoculation had a better effect and can be used to develop multi-strain biofertilizer to promote growth and yield of crops.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference55 articles.

1. Growth response of wheat and associated weeds to plant antagonistic rhizobacteria and fungi

2. Use of Azospirillum and Azobacter bacteria as biofertilizers in cereal crops: A review;Abd El-Latief;Int. J. Res. Eng. Appl. Sci.,2016

3. A preview of perennial grain agriculture: knowledge gain from biotic interactions in natural and agricultural ecosystems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3