Abstract
Climate change may result in increasingly frequent extreme events, such as the unusually dry conditions that occurred in Germany during the apple growing season of 2018. To assess the effects of this phenomenon on dormancy release and flowering in apples, we compared irrigated and non-irrigated orchard blocks at Campus Klein-Altendorf. We evaluated bud development, dormancy release and flowering in the following season under orchard and controlled forcing conditions. Results showed that irrigated trees presented longer (39.2%) and thinner shoots compared to non-irrigated trees. In both treatments, apical buds developed a similar number of flower primordia per cyme (4–5), presenting comparable development and starch dynamics during dormancy. Interestingly, buds on non-irrigated shoots exposed to low chill levels responded earlier to forcing conditions than those on irrigated shoots. However, chill requirements (~50 Chill Portions) and bud phenology under field conditions did not differ between treatments. In spring, buds on non-irrigated trees presented a higher bloom probability (0.42) than buds on irrigated trees (0.30). Our findings show that mild water stress during summer influenced vegetative growth during the same season, as well as the response of buds to forcing temperatures and flowering of the following season. The differences between irrigation levels in the phenological responses of shoots under low-chill conditions point to a so-far understudied impact of water supply on chilling requirements, as well as subsequent bud behavior. Accounting for the effects of both the water status during summer and the temperature during the dormant season may be required for accurately predicting future tree phenology in a changing climate.
Subject
Agronomy and Crop Science
Reference76 articles.
1. Deutscher Wetterdienst. Zeitreihen und Trends
https://www.dwd.de/DE/leistungen/zeitreihen/zeitreihen.html#buehneTop
2. Annex I: Atlas of global and regional climate projections;Van Oldenborgh,2013
3. Regulation of floral initiation in horticultural trees
4. Regulated deficit irrigation for crop production under drought stress. A review
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献