The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.)

Author:

Breś Włodzimierz,Kleiber TomaszORCID,Markiewicz BartoszORCID,Mieloszyk Elżbieta,Mieloch Monika

Abstract

In recent decades, increasing human pressure has caused the gradual deterioration of the physical and chemical properties of water and soil. Salinity is an important factor influencing the quality of water. The aim of this comprehensive research was to determine the effect of increasing concentrations of sodium chloride, which is a salinity inducer, on the yield, photosynthesis efficiency (expressed with chlorophyll fluorescence measurement) and content of selected nutrients in the leaves of hydroponically grown lettuce (Lactuca sativa L.). Experiments were conducted at the following concentrations of NaCl: 0 (control treatment), 10, 20, 40, and 60 mmol L−1. Studies were conducted in two independent seasons: spring and autumn. The plants exposed to NaCl stress modified their chemical composition by lowering the uptake of (for 60 mmol L−1 NaCl in relation to control): N (−11%), K (−35.7%), and Mg (−24.5%), while increasing the sodium content (+2400%). The Na:K ratio was significantly narrowed (from 76:1 to 2.6:1). The increase in the Cl level in the lettuce leaves may also have caused a decrease in the content of nitrates. As a result of disturbed ionic balance, the RWC was significantly reduced (−6.2%). As a result of these changes, the yield of the biomass of the aerial parts decreased (more than two-fold for the highest NaCl concentration in relation to control) whereas the dry matter content increased (+32%). The measurement of fluorescence showed significant changes at the PSII level. Salinity modified the energy flow rate (F0, FM, FV, FV/FM) as well as the specific energy flows through the reaction centre (ABS/RC, TR0/RC, ET0/RC, DI0/RC). The PSII functioning index, calculated on the basis of energy absorption (PIAbs), also changed. The salinity induced with NaCl significantly worsened the physiological reactions of the plants in the PSII, changed the ionic balance, which resulted in a significantly lower yield of the plants. Due to increasing water quality problems, it will be necessary to use, in agriculture on a much larger scale than before, saline water treatment systems (e.g., highly effective nanofiltration and/or reverse osmosis).

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference76 articles.

1. Dystrybucja fotoasymilatów kluczowym procesem determinującym plon;Starck;Postępy Nauk Rol.,2009

2. Combating poor water quality with water purification systems;Reed,1996

3. Responses of Growth and Mineral Nutrition of Garden Roses to Saline Water Irrigation

4. Effect of Environmental Salt Stress on Plants and the Molecular Mechanism of Salt Stress Tolerance

5. Additive effects of Na+ and Cl– ions on barley growth under salinity stress

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3