Improved Method for Extracting Nitrites in Soil

Author:

Song Yaqi12,Wu Dianming234ORCID,Dörsch Peter5ORCID,Yue Lanting2,Deng Lingling2,Liao Chengsong6,Sha Zhimin7,Dong Wenxu8,Yu Yuanchun1ORCID

Affiliation:

1. College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China

3. Institute of Eco-Chongming (IEC), Shanghai 202162, China

4. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

5. Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Ås, Norway

6. Institute of Xilingol Bioengineering Research, Xilingol Vocational College, Xilinhot 026000, China

7. Graduate School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China

8. Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China

Abstract

Soil nitrite (NO2−) is an important reactive intermediate in many nitrogen transformation processes, but it is unstable under acidic conditions and may be lost as gaseous N. The canonical extraction method of soil NO2− using a potassium chloride (KCl) solution greatly underestimates its concentration. To reflect the concentration more accurately, we optimized the extraction method of soil NO2− for three agricultural soils differing in soil texture and pH, an alkalic fluvo-aquic soil and acidic Mollisol and Ultisol soils, respectively. Both extractable soil ammonium (NH4+) and nitrate (NO3−) were systematically investigated to optimize the simultaneous extraction of soil inorganic nitrogen. The effects of different extractants (deionized water (DIW), un-buffered 2 mol L−1 KCl, and pH-buffered 2 mol L−1 KCl), shaking time (10 and 30 min), and storage duration of the extracts (stored at −20 °C for 1 day, and at 4 °C for 1, 3, and 6 days) on the determination of soil inorganic nitrogen were investigated. The results showed that the un-buffered KCl extractant significantly underestimated soil NO2− concentration compared to DIW. The highest recovery of NO2− was obtained by extracting with DIW at 10 min of shaking for all three soils. Compared with DIW, the concentration of NH4+ and NO3− in soil extracted from the KCl solution increased significantly. Furthermore, the soil inorganic nitrogen content of extracts stored at 4 °C for one day was closer to the direct measurements of fresh samples than with the other storage methods. Overall, the recommended analysis method for soil NO2− was extraction by DIW, shaking for 10 min, and filtering with a 0.45 µm filter, while soil NH4+ and NO3− were extracted with a KCl solution and shaken for 30 min. The extract should be stored at 4 °C and analyzed within 24 h. Our study provides an efficient extraction method for soil NO2− and supports studies on the biogeochemical nitrogen cycle, e.g., in the investigation of soil nitrous acid (HONO) and nitric oxide (NO) emissions.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3