Cytological Pattern Reveals Genome Downsizing in Cynodon dactylon (L.) Pers along the Longitudinal Gradient

Author:

Li Manqing1,Wang Miaoli2,Zhang Jingxue1,Feng Guilan1,Noor Maryam1,Guo Zhipeng2,Guo Yuxia2,Guan Yongzhuo2,Yan Xuebing1ORCID

Affiliation:

1. College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China

2. College of Animal & Veterinary Science, Henan Agricultural University, Zhengzhou 450002, China

Abstract

Understanding the cytological pattern of genome size and ploidy level of the bermudagrass (Cynodon dactylon) is vital to explore the evolution pattern and breeding of the species. To study the diversification of the cytological pattern of bermudagrass along the longitudinal gradient, the genome size and ploidy level were measured and explored with the relationship to climate factors. The corresponding ploidy level was verified through the mitotic chromosome counts method. Bermudagrass accessions ploidy level included diploids, triploid, tetraploid, pentaploid and hexaploid with a basic chromosome number of x = 9. The major ploidy level was tetraploid (45%) and aneuploidy was commonly discovered in collected regions. Mean genome size of bermudagrasswas was estimated to be 1.31 pg/1Cx along longitudinal gradient. The 1Cx values of diploid were higher than that of triploid and tetraploid, while the tetraploid had minimum basic genome size. In the current study, we observed that genome downsizing exists in tetraploids of Cynodon dactylon. Tetraploids have a wider distribution than other ploidy levels, especially in arid areas, occupying a relatively high proportion. In addition, at the same ploidy level, genome size was remarkably variable in the current study. The coefficient of determination analysis showed that longitude and mean annual rainfall were significantly correlated to genome size rather than ploidy level. This cytological study will be helpful for further genetic mechanisms and molecular characteristics to landscape adaptation of bermudagrass.

Funder

National Natural Science Foundation of China

Project of Forestry Science and Technology Innovation and Promotion of Jiangsu

Jiangsu Students’ Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3