Abstract
The article presents the findings of a field experiment investigating the effectiveness of biochar and plant biomass ash when used as a soil fertiliser in the cultivation of basket willow (Salix viminalis L.). The purpose of the study was to determine the optimal dose of fertiliser to enable a maximum increase in the crop yield and enhancement of the chemical properties of the soil. In the course of the two-year experiment, the increase in basket willow yield was in the range of 6%–49%. The highest dry matter yield from the plants, at the end of both the first and the second year of the experiment, was obtained in the plots where the soil was amended with biochar alone (11.5 t ha−1), a combination of biochar and ash (respectively 11.5 and 1.5 t ha−1) and ash added at the rate of 1.5 t ha−1. The yield was reduced when the soil was amended with ash added at the rates of 3.0 t ha−1 and 4.5 t ha−1 or with the latter doses of ash combined with biochar. The results indicated that too high a concentration of ash (rate of 3.0 t ha−1 or higher for basket willow) have negative effects on plant growth and may represent a limiting factor. The study suggests that biochar is a better soil amendment than ash, because biochar application gave the highest improvement in the soil properties and plant growth. It was found that the addition of biochar, biomass ash or combinations of the two materials applied in suitable doses may be a good soil amendment.. In particular in soils which are severely damaged and require restoration, this fertilization may have a noticeable effect on soil properties and plant growth.
Subject
Agronomy and Crop Science
Reference89 articles.
1. Biochar—A response to current environmental issues;Malińska;Inżynieria Ochrona Środowiska,2012
2. Biochar for Environmental Management: Science and Technology;Lehmann,2009
3. Biochar effects on soil biota – A review
4. Bio-energy in the black;Lehman;Front. Ecol. Environ.,2007
5. Hydropyrolysis as a new tool for radiocarbon pre-treatment and the quantification of black carbon;Ascough;Quat. Geochronol.,2009
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献