Method of Tillage with the Factor Determining the Quality of Organic Matter

Author:

Debska BozenaORCID,Jaskulska IwonaORCID,Jaskulski Dariusz

Abstract

The aim of this paper has been to determine the importance of the strip-till method for the content of carbon and the quality of organic matter as compared with plough and ploughless tillage. The question to answer has been to what extent strip-till can contribute to carbon sequestration and thus be part of the strategy of counteracting climate change. The research involved soil where conventional tillage (CT), strip-till (ST), and reduced tillage (RT) were applied. These systems differ completely in the way they affect the post-harvest residue, i.e., “plant residue management”. For air-dry soil samples, the following analyses were made: the content of total organic carbon (TOC) and total nitrogen (Nt), content of dissolved organic carbon (DOC) and dissolved nitrogen (DNt), and the fractional composition of humus. In the surface layer the content of TOC ranged from 11.96 (CT) to 13.88 g kg−1 (RT) and DOC ranged from 209.9 (CT) to 230.5 mg kg−1 (ST). The share of the fraction of fluvic acids (0–15 cm layer) changed from 15.51% (RT) to 18.81% (ST), the share of the fraction of humic acids was 9.36% (ST) to 11.60%, and humins were 68.90% (CT) to 72.6% (RT). These results demonstrated that the tillage system determines the properties of the organic matter of soil. In the surface layer (0–15 cm) and in the 30–50 cm layer the properties of the soil organic matter under strip-till had a greater similarity to the soil under ploughless tillage than under conventional tillage. Ploughless tillage and strip-till considerably limited the leaching of carbon and nitrogen from the surface layer to the 30–50 cm layer. Strip-till, similarly to ploughless tillage, is the tillage method which can be crucial for the process of carbon sequestration.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3