Response of Strawberry to the Substitution of Blue Light by Green Light in an Indoor Vertical Farming System

Author:

Avendaño-Abarca Víctor H.,Alvarado-Camarillo Daniela,Valdez-Aguilar Luis Alonso,Sánchez-Ortíz Estanislado A.,González-Fuentes José A.,Cartmill Andrew D.

Abstract

Indoor production systems with light emitting diode (LED) lamps are a feasible alternative for increasing strawberry productivity by reducing the incidence of pests and diseases and the damage caused by extreme weather events. Blue (BL) and red (RL) LED light are considered the most important light spectra for photosynthesis and crop yield; however, recent studies have demonstrated that the beneficial effects of green light (GL) have been underestimated. This information would be of particular importance for strawberry production in controlled-environments/vertical farming systems as it may lower input costs and enhance production efficiency and quality and marketability. The present study aimed to define the effect of GL in combination with BL in strawberry. A proportion of 20% GL (20% BL + 60% RL) of total photosynthetic photon flux density was beneficial for plant growth and productivity; however, a 27% GL (12% BL + 61% RL) proportion was detrimental or comparable to that with 6% GL (36% BL + 58% RF). Total dry mass increased 51% when plants were illuminated with 20% GL lamps compared to those with 6% GL; the most impacted plant part was the root as it increased by 155%. The higher yield was observed with GL at 20%, but further increasing GL to 27% resulted in reduced yield. GL at 20% and 27% exhibited higher photosynthesis but reduced transpiration, stomatic conductance, and internal CO2, which in turn increased instantaneous and intrinsic water-use efficiency. Plants with the highest yield (20% GL) exhibited lower total soluble solids in fruits but still the values obtained were acceptable (8.25 °Brix); these fruits contained a high total sugars and phenolics concentration but a reduced antioxidant scavenging capacity. High proportions of GL were associated with a higher leaf and fruit Ca and a higher leaf P and K, which may be due to the increased allocation of biomass to the roots. In conclusion, GL at 20% and BL at 20% resulted in the best growth and yield parameters, enhanced net photosynthesis rate, water-use efficiency and fruit quality attributes. The effects of GL observed in this study may also be important for other high-value horticultural crops suitable for indoor vertical farming.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3