Drought-Adaptive Mechanisms of Young Sweet Cherry Trees in Response to Withholding and Resuming Irrigation Cycles

Author:

Blaya-Ros Pedro JoséORCID,Blanco VíctorORCID,Torres-Sánchez RoqueORCID,Domingo RafaelORCID

Abstract

The present work evaluates the main adaptive mechanisms developed by young sweet cherry trees (Prunus avium L.) to cope with drought. For this purpose, the young trees were subjected to two drought cycles with different water stress intensities followed by a recovery period. Three irrigation treatments were applied: control treatment (CTL) irrigated to ensure non-limiting soil water conditions; moderate water stress (MS) subjected to two drying cycles whose duration was dependent on the time elapsed until the trees reached values of midday stem water potential (Ψstem) of −1.3 and −1.7 MPa for the first and second cycle, respectively; and severe water stress (SS) similar to MS, but with reference values of −1.6 and −2.5 MPa. In-between drought cycles, MS and SS trees were irrigated daily as the CTL trees until reaching Ψstem values similar to those of CTL trees. The MS and SS trees showed an important stomatal regulation and lower vegetative growth. The decreasing leaf turgor potential (Ψturgor) during the drought periods accounted for 40–100% of the reduction in leaf water potential at midday (Ψmd). The minimum osmotic potential for mature leaves was about 0.35 MPa lower than in well-irrigated trees. The occasional osmotic adjustment observed in MS and SS trees was not sufficient to maintain Ψturgor values similar to the CTL trees or to increase the specific leaf weight (SLW). The leaf insertion angle increased as the water stress level increased. Severe water stress (Ψstem < −2.0 MPa) resulted in clear early defoliation as a further step in water conservation.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3