Effects of Different Drip Irrigation Patterns on Grain Yield and Population Structure of Different Water- and Fertilizer-Demanding Wheat (Triticum aestivum L.) Varieties

Author:

Jing Jianguo1,Li Zhaofeng1,Qian Fu1,Chang Xinyi1,Li Weihua1

Affiliation:

1. Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China

Abstract

A suitable population structure is the foundation for a high yield of wheat. Studying the changes in yield and population structure of different wheat rows under drip irrigation conditions can provide a theoretical basis for optimizing wheat drip irrigation pattern. In a two-year field experiment, two different water- and fertilizer-demanding spring wheat varieties (XC22 and XC44) were used to study the changes of stem and tiller dynamics, dry matter accumulation, canopy photo-synthetically active radiation (PAR) interception, and canopy apparent photosynthesis rate (CAP) under one tube serving four rows of wheat drip irrigation pattern (TR4, drip lateral spacing (DLS) = 60 cm, wheat row spacing (WRS) = 15 cm) and one tube serving six rows of wheat drip irrigation pattern (TR6, DLS = 90 cm, WRS = 15 cm; TR6L, DLS = 90 cm, WRS = 10 cm and TR6S, DLS = 80 cm, WRS = 10 cm). The results showed that under the condition of equal row spacing of 15 cm, after increasing the number of wheat rows serving by one drip irrigation tube from four (TR4, control) to six (TR6), the yields (water use efficiency) of XC22 and XC44 were lower by 11.19% and 8.63%, respectively. The reduction of yield was related to uneven population growth, specifically as follows: compared with the first wheat row (R1), at flowering stage the leaf area index (LAI) and PAR interception in the third wheat row (R3) of XC22 and XC44 were significantly decreased by 30.02%, 18.69%, 9.59%, and 14.74%, respectively. At the maturity stage, the biomass, plant height, and panicles number of tiller (TPN) in R3 were significantly decreased by 22.15%, 12.34%, 15.46%, 5.24%, 65.07%, and 42.11%, respectively. At the jointing, flowering, and milk-ripening stage, the CAP were significantly decreased by 24.65%, 22.85%, 17.06%, 14.02%, 42.14%, and 32.27%, respectively, the decrease of XC22 were all higher than that of XC44 (except for PAR interception). After the TR6 pattern was processed to narrow the wheat row spacing from 15 cm to 10 cm under the condition of the same drip tube lateral spacing (TR6L) and under the condition of shortening drip tube lateral spacing by 10 cm (TR6S), the yields in R3 of XC22 and XC44 were significantly increased by 20.07%, 18.43%, 30.39%, and 23.80%, respectively, and the increase in yields were related to the improvement of LAI, biomass, plant height, TPN, PAR interception, and increased population photosynthesis. Among the four drip irrigation patterns, for both XC22 and XC44, the yield of TR6S was the closest to that of TR4, and the yields of them were significantly higher than that of TR6 and TR6L.

Funder

Fund for the key project of Xinjiang Regional Joint Fund of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3